Многоступенчатые ракеты и ракетно-космические системы. Многоступенчатая ракета - принцип действия многоступенчатой ракеты Техническое описание ракеты «Зея»

Использование: изобретение относится к ракетной технике, конкретно - к устройству многоступенчатых жидкостных ракет. Сущность изобретения: многоступенчатая ракета включает тандемно расположенные ступени со средствами разделения, ракетными двигателями и баками для компонентов жидкого топлива. В предыдущей ступени бак одного топливного компонента разделен баком другого на переднюю и заднюю секции, в первой из которых утоплен двигатель последующей ступени и имеются средства сообщения с окружающей средой. Целью является снижение энергетических затрат на управление полетом летательного аппарата наряду со снижением конструкционной массы. Целесообразная область применения - баллистические и космические ракеты-носители. 1 з.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике, конкретно к устройству многоступенчатых жидкостных ракет. Известна многоступенчатая ракета, включающая тандемно расположенные предыдущую и последующую ступени со средствами разделения, ракетными двигателями и баками для компонентов жидкого топлива, в одном из которых утоплен двигатель последующей ступени /1/. Описанная многоступенчатая ракета с утопленным ракетным двигателем (РД) характеризуется относительно малой длиной и, следовательно, малым удалением точки приложения тяги от центра масс летательного аппарата (ЛА), что требует больших управляющих сил для стабилизации ЛА и удержания его на заданной траектории полета. В итоге управление полетом известной ракеты сопряжено с существенными энергетическими потерями или снижением результирующего импульса тяги двигательной установки. Далее, для создания управляющих сил в ракетной ступени с утопленным РД приходится предусматривать вспомогательные рулевые агрегаты в виде специальных РД, камер или сопел малой тяги, что дополнительно снижает удельный импульс тяги, а также усложняет и утяжеляет конструкцию всего ЛА. Описанный недостаток известной многоступенчатой ракеты особенно проявляется для последующей ступени, в одном из баков которой утоплен собственный РД. Изобретение решает техническую задачу снижения энергетических затрат на управление полетом ЛА наряду со снижением массы конструкции ЛА. При этом ожидается технический результат, состоящий в получении указанных выгод, что позволит в конечном счете увеличить долю полезного груза в общей массе ЛА. Поставленная задача решается тем, что в многоступенчатой ракете, включающей тандемно расположенные предыдущую и последующую ступени со средствами разделения, ракетными двигателями и баками для компонентов жидкого топлива, в одном из которых утоплен двигатель последующей ступени согласно изобретению, в предыдущей ступени бак одного топливного компонента разделен баком другого топливного компонента на переднюю и заднюю секции, двигатель последующей ступени утоплен в первой из них, и предусмотрены средства для опережения выработки топливного компонента из первой секции и последующего снижения давления в ней до уровня, обеспечивающего безопасное и контролируемое разделение ступеней, а средства снижения давления в передней секции бака включают одно или несколько перекрываемых сопел, преимущественно ориентированных вдоль продольной оси ракеты и соединенных с указанной секцией посредством трубопровода, проходящего через разделяющий секции бак другого топливного компонента. На чертеже схематично дана предлагаемая многоступенчатая ракета. Она содержит тандемно расположенные первую ступень 1 и вторую ступень 2, соединенные при помощи фланцев с пироболтами 3, в головной части ракеты установлен полезный груз 4, отделяемый при помощи пироустройств 5. Каждая из ступеней 1 (2) содержит образующие корпус ракеты топливные баки (секции) окислителя 6 (7) и горючего 8а, 8б (9) соответственно, ограниченные днищами 10. 15. Все они, кроме заднего днища 10 и переднего 15, представляют собой разделительные внутренние перегородки, общие для смежных баковых секций. Бак горючего первой ступени выполнен из двух секций, задней 8а и передней 8б, которые разделены промежуточным баком окислителя 6 и сообщены между собой посредством проходящего через этот бак расходного тоннельного трубопровода 16 с установленным в нем клапаном 17. В хвостовых частях ракетных ступеней размещены жидкостные РД 18 и 19, соединенные с баками расходными (питающими) трубопроводами окислителя 20, 21 и горючего 22, 23, с целью управления ракетой в полете РД снабжены шарнирными подвесами 24, 25. Передняя секция 8б бака горючего первой ступени и бак горючего 9 второй ступени разделены общим днищем (перегородкой) 13 и под ним смонтирован двигатель 19 второй ступени, погруженный, таким образом, в бак горючего первой ступени. Средства разделения ступеней 3 размещены под упомянутым общим днищем 13; под ним же, в стенке баковой секции 8б, предусмотрены люки 26 (показан один), вскрываемые посредством пирошнуров (не показаны). В частном случае, который представлен штриховыми линиями в левой нижней части чертежа, вместо элементов 16, 17, 26 ракета содержит расходный трубопровод 27 (аналогичный трубопроводу 16) с баковым ответвлением 27а, в котором установлен клапан 28 (аналогичный клапану 17) нижний конец указанного трубопровода выведен на днище 10 и соединен с реактивные соплом 29, перекрытым заглушкой 30. Предлагаемая многоступенчатая ракета функционирует следующим образом. После сборки ракетных ступеней 1 и 2 в единый ЛА и установки на него полезного груза 4 ракету помещают на стартовое устройство и топливные баки заправляют компонентами жидкого ракетного топлива: баки 6,7 жидким окислителем, баки 8а, 8б, 9 жидким горючим; при этом клапан 27 (28) открыт. В заправленной ракете конструкция РД 19 находится в контакте с содержимым баковой секции 8б. По команде "Пуск" производят наддув баковых секций 8, 8б и подают на них топливо по трубопроводам 20, 16 (27), 22 в двигатели 18, что обеспечивает их включение в работу и старт ракеты. Ее полет по заданной траектории обеспечивается путем поворота РД в шарнирных подвесках 24 при помощи рулевых приводов (на чертеже не показаны). После выработки горючего из секции 8б и трубопровода 16 (27) закрывают клапан 17 (28), удаляют люки 26 (заглушку 30 из сопла 29) и включают наддув баковой секции 8а. В результате этих операций РД 18 переключается на питание горючим от секции 8а (окислитель по-прежнему поступает из бака 6). Одновременно секция 8б соединяется с окружающей средой (атмосферой), в которую истекают газы и испаряющиеся остатки горючего из указанной секции, понижая в ней давление. К моменту его падения с первоначальной величины в несколько атмосфер до 0,3.0,5 кгс/см 2 (30.50 кПа) и ниже происходит полная выработка топлива из баков 6, 8а, и РД 18 выключают (перекрытием расходных трубопроводов). Одновременно включают в работу РД 13 (аналогично РД 18) и подрывают пироболты 3. При этом баковая секция 8б отделяется вместе с отработавшей ступенью 1 от остальной части ЛА, а вторая ступень 2 продолжает полет, будучи управляема путем поворота РД 19 в шарнирном подвесе 25 (аналогично первой ступени). После выработки топлива из баков 7, 9 производят выключение РД 19 и задействуют пироустройства 5, отделяющие полезный груз 4 для его самостоятельного функционирования. Предлагаемая многоступенчатая ракета обеспечивает достижение нескольких целей. Первой из них является снижение энергетических затрат на управление полетом ЛА. Как упоминалось, известная ракета с РД, утопленным в баке собственной ступени, ввиду малого удлинения ЛА характеризуется малым удалением точки приложения тяги от центра масс ЛА, что требует значительных управляющих сил для стабилизации ЛА и его удержания на траектории. При утоплении РД последующей ступени в "чужом" баке согласно изобретению длина ДА в целом уменьшается, в то время как последующая ступень сохраняет размеры, характерные для ЛА без утопления РД, а следовательно, энергозатраты на управление полетом последующей ступени и ЛА в целом снижаются. Этому способствует также применимость нашего технического решения к РД, снабженным шарнирными подвесами: после отделения отработавшей ступени утопленный в ее баке РД последующей ступени становится обычным, "неутопленным" и может беспрепятственно отклоняться в шарнирном подвесе. Благодаря этому становится возможным управлять полетом ЛА по тангажу и рысканью, а для многокамерной двигательной установки и по крену с минимальными энергозатратами. Отсутствие специальных рулевых двигателей, камер и сопел упрощает и облегчает конструкцию двигательной установки и ЛА в целом, повышает их надежность. Предлагаемое нами утопление РД в "чужом" баке связано со специфичной проблемой ввиду общепринятого для ракетных ступеней переднего расположения бака окислителя: без принятия специальных мер конструкция утопленного в "чужом" баке РД оказалась бы в неблагоприятном контакте с окислительной средой, что снизило бы надежность ЛА. Во избежание этого нами предложено в предыдущей ступени разделить бак одного топливного компонента (промежуточная баком другого) на переднюю и заднюю секции, в первой из которых утопить РД последующей ступени, обеспечив таким путем контакт конструкции РД с восстановительной средой. При этом сохраняется также унификация РД для обеих ступеней в случае, когда на предыдущей ступени РД также утоплен (в собственном баке). Для достижения унификации может оказаться необходимым секционирование бака окислителя посредством бака горючего: например, при использовании на первой ступени топлива кислород-метан, а на второй топлива кислород-водород, поскольку водородный бак принято размещать спереди. Другая специфичная проблема утопления РД в "чужом" баке касается разделения ступеней. Без принятия специальных мер ступень 2 (см. чертеж) при разрыве силовых связей 3 подверглась бы весьма большому силовому воздействию от приложенного к днищу 13 остаточного давления в баковой секции 8б. Такое воздействие способно вызвать разрушительные для конструкции последующей ступени и полезного груза перегрузки: кроме того, ввиду возможности нерасчетного характера нагрузки разделение ступеней может происходить нестабильно. Для решения этой специфичной проблемы нами предусмотрены средства сообщения передней баковой секции (в которой утоплен РД) с окружающей средой после выработки топливного компонента из указанной секции. В частном случае, указанные средства включают перекрываемые реактивные сопла, преимущественно ориентированные вдоль продольной оси ракеты, и соединенные с указанной секцией посредством тоннельного трубопровода, проходящего через промежуточный бак. Такое частное техническое решение выгодно по энергетическим и массовым характеристикам ЛА: газ и остатки топливного компонента в передней баковой секции используются для создания разгонного тягового импульса; в случае одиночного сопла (которое можно расположить по оси ЛА) число и длина тоннельных вспомогательных трубопроводов минимальна, компоновка получается удобной. Наиболее целесообразной областью использования изобретения представляются баллистические и космические ракеты-носители.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Многоступенчатая ракета, включающая тандемно расположенные предыдущую и последующую ступени со средствами разделения, ракетными двигателями и баками для компонентов жидкого топлива, в одном из которых утоплен двигатель последующей ступени, отличающаяся тем, что в предыдущей ступени бак одного топливного компонента разделен баком другого топливного компонента на переднюю и заднюю секции, двигатель последующей ступени утоплен в первой из них, при этом предусмотрены средства для опережающей выработки топливного компонента из первой секции и последующего снижения давления в ней до уровня, обеспечивающего безопасное и контролируемое разделение ступеней. 2. Ракета по п. 1, отличающаяся тем, что средства снижения давления в передней секции бака включают одно или несколько перекрываемых сопл, преимущественно ориентированных вдоль продольной оси ракеты и соединенных с указанной секцией посредством трубопровода, проходящего через разделяющий секции бак другого топливного компонента.


Владельцы патента RU 2532289:

Изобретение относится к космической технике и может быть использовано в одноступенчатых ракетах-носителях. Одноступенчатая ракета-носитель тяжелого класса содержит двигательную установку с одним или несколькими кислородно-водородными ЖРД, топливный бак (ТБ), один или два отделяемых дополнительных топливных бака (ДТБ), установленных по тандемной схеме, одну или несколько пар диаметрально противоположных отделяемых навесных топливных баков (НТБ), проставку, трубопроводы, соединяющие ТБ с ДТБ и НТБ. Изобретение позволяет исключить поля падения отработанных топливных баков. 8 ил.

Изобретение относится к конструкции ракет-носителей и может быть использовано при разработке одноступенчатых ракет-носителей для выведения полезных нагрузок на орбиту искусственного спутника Земли (ИСЗ).

Следует отметить, что одноступенчатой ракете-носителю для достижения орбитальной скорости теоретически необходимо иметь конечную массу не более 7-10% от стартовой, что при даже существующих технологиях делает их труднореализуемыми и экономически неэффективными из-за низкой массы полезного груза. В истории мировой космонавтики одноступенчатые ракеты-носители практически не создавались - существовали только т.н. полутораступенчатые модификации (например, американской РН «Атлас» со сбрасываемыми дополнительными маршевыми двигателями). Наличие нескольких ступеней позволяет существенно увеличить отношение массы полезной нагрузки к начальной массе ракеты. В то же время многоступенчатые ракеты-носители требуют наличия территорий для падения промежуточных ступеней (Материал из Википедии - свободной энциклопедии).

Известна одноступенчатая ракета-носитель ВР-190, представленная в книге В.Н.Кобелева и А.Г.Милованова «Средства выведения космических аппаратов», 2009 г. (глава 5, стр.134).

Ракета-носитель ВР-190 была рассчитана для вертикального полета на высоту до 200 км.

Принципиальным недостатком ракеты-носителя ВР-190 было отсутствие возможности выведения полезной нагрузки на орбиту ИСЗ.

Современные работы в части ракет-носителей, основанные на использовании кислородно-водородных жидкостных ракетных двигателей (ЖРД), показали благотворное влияние криогенного топлива на основные характеристики ракеты-носителя.

Примером может служить ракета-носитель Дельта-4 (фирма Боинг, США), первая ступень которой согласно теоретическим расчетам может выводить полезные нагрузки на орбиту ИСЗ без использования второй ступени и, таким образом, выполнять роль одноступенчатой ракеты-носителя, правда полезная нагрузка при этом будет невелика (Новости космонавтики. Том 13, №1 (240), 2003 г., стр.46).

Целью изобретения является устранение этого недостатка.

Указанная цель достигается тем, что одноступенчатая ракета-носитель (фиг.1, 2), состоящая из двигательной установки с одним или несколькими кислородно-водородными ЖРД 1 и топливного бака 2, оснащена одним - двумя дополнительными топливными баками 3, которые по тандемной (продольной) схеме последовательно расположены на топливном баке 2 с помощью проставки 4, внутри которой установлена полезная нагрузка 5 и, кроме этого, ракета-носитель по пакетной (параллельной) схеме оснащена одной или несколькими парами навесных диаметрально противоположно расположенных относительно друг друга топливных баков 6, при этом баки горючего 7 и 8 и окислителя 9 и 10 топливных баков 3 и 6 соответственно соединены трубопроводами 11, 12 и 13, 14 с баками горючего 15 и окислителя 16 топливного бака ракеты-носителя 2.

В процессе работы двигательной установки 1 и забора топлива из баков горючего 15 и окислителя 16 топливного бака ракеты-носителя 2 осуществляется одновременная подача топлива в эти баки соответственно из баков горючего 8 и окислителя 10 первой пары диаметрально противоположных относительно друг друга навесных баков 6.

После выработки топлива из первой пары навесных топливных баков осуществляется их отделение и одновременный забор горючего (фиг.3, 4) и окислителя из следующей пары навесных топливных баков.

После отделения последней пары навесных топливных баков одноступенчатая ракета-носитель использует топливо из топливного бака 3 (фиг.5, 6).

После выработки топлива из бака 3 одноступенчатая ракета-носитель использует топливо из собственного топливного бака 2 вплоть до выхода на орбиту ИСЗ с дальнейшим отделением бака 3 (фиг.7, 8).

Техническим результатом изобретения, основанного на использовании дополнительных топливных баков по тандемной и пакетной схемам, расположенных на топливном баке ракеты-носителя и сбрасываемых в процессе полета, является создание нового класса экологически чистых одноступенчатых ракет-носителей тяжелого класса, способных вывести полезную нагрузку на орбиту ИСЗ и являющихся экономичной и надежной транспортной системой. При этом сокращается номенклатура и количество используемых в одноступенчатой ракете-носителе дорогостоящих ЖРД и практически исключается проблема выбора места старта ракеты-носителя и полей падения, поскольку навесные топливные баки изготавливаются из алюминиевых сплавов и других материалов, сгорающих в атмосфере Земли.

Одноступенчатая ракета-носитель тяжелого класса, состоящая из двигательной установки с одним или несколькими кислородно-водородными жидкостными ракетными двигателями и топливного бака, отличающаяся тем, что одноступенчатая ракета-носитель оснащена одним - двумя дополнительными топливными баками, которые по тандемной (продольной) схеме последовательно расположены на топливном баке ракеты-носителя с помощью проставки, и, кроме этого, ракета-носитель оснащена по пакетной (параллельной) схеме одной или несколькими парами диаметрально противоположных относительно друг друга топливных баков, при этом баки горючего и окислителя дополнительных топливных баков соединены трубопроводами с баками горючего и окислителя топливного бака одноступенчатой ракеты-носителя, при этом боковые навесные топливные баки установлены с возможностью их отделения после выработки топлива, дополнительные баки - с возможностью отделения.

Похожие патенты:

Изобретение относится к космонавтике, а именно к бакам для хранения компонентов ракетного топлива. Космическая пусковая установка содержит криогенный бак, содержащий оболочку, одну перегородку (ограничивающую верхний и нижний объём текучей среды) с центральным проёмом (связывающий верхний и нижний объём текучей среды), вентиляционный канал с корпусом, удерживающим барьером (стенка) или механическим ограничителем, и проходами в перегородке.

Изобретение относится к композитным материалам, предназначенным для применения в космосе. Использование, по меньшей мере, одной полимеризуемой смолы R1, выбираемой из группы, состоящей из эпоксидированных полибутадиеновых смол и характеризующейся в неполимеризованном состоянии: - величиной общей потери массы (ОПМ), меньшей чем 10%, величиной восстановленной потери массы (ВПМ), меньшей чем 10%, и величиной собранного летучего конденсируемого материала (СЛКМ).

Изобретение относится к космической технике, а именно к компоновке космических аппаратов. Ёмкость изготавливают с тремя отверстиями для отвода пара, основное отверстие выполняют с центром, через который проходит центральная ось емкости, параллельная продольной оси спутника, направленная в сторону центра масс спутника, два дополнительных отверстия выполняют с центрами, через которые проходит другая параллельная ось емкости, параллельная оси спутника, направленная по направлению полета его.

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения.

Изобретение относится к крылатым летательным аппаратам, в которых используется криогенное топливо, и касается ракетных блоков многоразового использования. Планер летательного аппарата включает корпус с криогенным цилиндрическим баком, крыло, элементы крепления крыла.

Группа изобретений относится к конструкции частей и элементов летательного аппарата, преимущественно к устройству кормовой части космического самолета (КС), а также к способам коррекции траектории и оптимизации тяги ракетного двигателя КС.

Изобретение относится к ракетно-космической технике, криогенной технике и касается пневмогидравлического соединения стыкуемых объектов. Устройство защиты пневмогидравлического соединения содержит кожух, который установлен на соединение и снабжен штуцером с заглушкой.

Изобретение относится к ракетной технике, а именно к одноступенчатым ракетам-носителям. Одноступенчатая ракета-носитель содержит один или несколько жидкостных ракетных двигателей, топливный бак с баками горючего и окислителя, одну или несколько пар навесных топливных баков горючего и окислителя, соединенных соответственно с баками горючего и окислителя топливного бака.

Изобретение относится к космической технике и может быть использовано в одноступенчатых ракетах-носителях. Одноступенчатая ракета-носитель тяжелого класса содержит двигательную установку с одним или несколькими кислородно-водородными ЖРД, топливный бак, один или два отделяемых дополнительных топливных бака, установленных по тандемной схеме, одну или несколько пар диаметрально противоположных отделяемых навесных топливных баков, проставку, трубопроводы, соединяющие ТБ с ДТБ и НТБ. Изобретение позволяет исключить поля падения отработанных топливных баков. 8 ил.

Изобретение относится к многоразовым транспортным космическим системам. Предлагаемая ракета содержит осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы. Между стойками указанных амортизаторов и соплом маршевого двигателя установлен теплозащитный экран, выполненный в виде пустотелого тонкостенного отсека из теплостойкого материала. Техническим результатом изобретения является минимизация газодинамических и тепловых нагрузок на амортизаторы от работающего маршевого двигателя при стартах и посадках ракеты-носителя и обеспечение вследствие этого требуемой надежности амортизаторов при многократном (до 50 раз) использовании ракеты. 1 ил.

Авторы патента:
Вавилин Александр Васильевич (RU)
Усолкин Юрий Юрьевич (RU)
Фетисов Вячеслав Александрович (RU)

Владельцы патента RU 2309088:

Федеральное государственное унитарное предприятие "Государственный ракетный центр "КБ им. академика В.П. Макеева" (RU)

Изобретение относится к ракетно-космической технике, в частности к многоразовым транспортным космическим системам (МТКС) нового поколения типа «Космическая орбитальная ракета - одноступенчатый носитель аппаратов» («КОРОНА») при пятидесяти- стократном ее использовании без капитального ремонта, которая является возможной альтернативой крылатым многоразовым системам типа «Спейс Шаттл» и «Буран».

Система «КОРОНА» предназначена для выведения полезной нагрузки (космических аппаратов (КА) и КА с разгонными блоками (РБ) на низкие околоземные орбиты в диапазоне высот от 200 до 500 км с наклонением, равным наклонению орбиты выводимого КА или близким к нему.

Известно, что при старте ракета расположена на пусковом устройстве, при этом находится в вертикальном положении и опирается на четыре опорных кронштейна хвостового отсека, на который действует вес полностью заправленной ракеты и ветровые нагрузки, создающие опрокидывающий момент, которые при одновременном действии являются наиболее опасными для прочности хвостового отсека ракеты (см., например, И.Н.Пенцак. Теория полета и конструкция баллистических ракет. - М.: Машиностроение, 1974, стр.112, Рис.5.22, стр.217, Рис.11.8, стр.219). Нагрузка при стоянке полностью заправленной ракеты распределяется на все опорные кронштейны.

Одним из принципиальных вопросов предлагаемой МТКС является разработка взлетно-посадочных амортизаторов (ВПА).

Проведенные в Государственном ракетном центре (ГРЦ) работы над проектом «КОРОНА» показали, что наиболее неблагоприятным случаем нагружения ВПА является посадка ракеты.

Нагрузка на ВПА при стоянке полностью заправленной ракеты распределяется на все опоры, в то время как при посадке, с большой долей вероятности, из-за допускаемого отклонения от вертикального положения корпуса ракеты возможна реализация случая, когда нагрузка приходится на одну опору. С учетом наличия вертикальной скорости эта нагрузка оказывается сопоставимой или даже превышающей нагрузку на стоянке.

Это обстоятельство позволило принять решение от отказе от специального стартового стола, перенеся силовые функции последнего на ВПА ракеты, что значительно упрощает стартовые сооружения для систем типа «КОРОНА», и соответственно, снижаются затраты на их строительство.

Наиболее близким аналогом предлагаемого изобретения является многоразовая одноступенчатая ракета-носитель «КОРОНА» вертикального взлета и посадки, содержащая осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы (см. А.В.Вавилин, Ю.Ю.Усолкин «О возможных путях развития многоразовых транспортных космических систем (МТКС)», РК техника, научно-технический сборник, серия XIY, выпуск 1 (48), часть П, расчет, экспериментальные исследования и проектирование баллистических ракет с подводным стартом, г. Миасс, 2002 г., стр.121, рис.1, стр.129, рис.2).

Недостатком конструкции ракеты-аналога является то, что ее ВПА расположены в зоне газодинамического и теплового воздействия пламени, выходящего из центрального сопла маршевой двигательной установки (МДУ) при многократном старте и посадке ракеты, в результате чего не обеспечивается надежная работа конструкции одного ВПА при требуемом ресурсе его использования (до ста полетов при двадцатипроцентном запасе по ресурсу).

Техническим результатом при использовании одноступенчатой многоразовой ракеты-носителя вертикального взлета и посадки является обеспечение требуемой надежности конструкции одного ВПА при пятидесятистократном использовании ракеты-носителя путем минимизации газодинамических и тепловых нагрузок на ВПА от работающей МДУ при многократных старте и посадках ракеты.

Сущность изобретения состоит в том, что в известной одноступенчатой многоразовой ракете-носителе вертикального взлета и посадки, содержащей осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы, в ней между стойками взлетно-посадочных амортизаторов и соплом маршевого двигателя установлен теплозащитный экран.

По сравнению с ближайшей ракетой-аналогом предлагаемая одноступенчатая многоразовая ракета-носитель вертикального взлета и посадки обладает лучшими функционально-эксплуатационными возможностями, т.к. в ней обеспечивается необходимая надежность конструкции одного ВПА (не ниже 0,9994) при заданном сроке эксплуатации одной ракеты-носителя (до ста пусков) путем изоляции (с помощью теплозащитного экрана) стоек ВПА от газодинамических и тепловых нагрузок работающей МДУ при заданном ресурсе (до ста) полетов ракеты-носителя при его многократных старте и посадках.

Для пояснения технической сущности предлагаемого изобретения показана схема предлагаемой ракеты-носителя с осесимметричным корпусом 1, соплом 2 маршевой двигательной установки, стойками взлетно-посадочного амортизатора 3 и теплозащитным экраном 4 пустотелого тонкостенного отсека из теплостойкого материала, который изолирует стойки взлетно-посадочного амортизатора от газодинамического и теплового воздействия пламени из центрального сопла маршевой двигательной установки при взлете и посадке ракеты.

Таим образом, предлагаемая многоразовая ракета-носитель вертикального взлета и посадки обладает более широкими функционально-эсплуатационными возможностями по сравнению с ближайшим аналогом путем повышения надежности одного взлетно-посадочного амортизатора при заданном ресурсе полетов ракеты-носителя, на котором этот взлетно-посадочный амортизатор расположен.

Одноступенчатая многоразовая ракета-носитель вертикального взлета и посадки, содержащая осесимметричный корпус с полезной нагрузкой, маршевую двигательную установку и взлетно-посадочные амортизаторы, отличающаяся тем, что в ней между стойками взлетно-посадочных амортизаторов и соплом маршевого двигателя установлен теплозащитный экран, выполненный в виде пустотелого тонкостенного отсека из теплостойкого материала.

Разработка системы посадки - число опор их устройство при условии минимизации их массы очень сложная задача...

Posts from This Journal “Патенты” Tag


  • Подними передний мост!!!

    Отличная идея! Буквально недавно эта идея видел в роботизированной машинке и вот снова... Поворот на одной оси тоже прекрасен. Переход к…


  • Двигатель CTL Atkinson cycle

    Неплохо придумано! Громоздкий классический механизм Аткинсона заменен более компактным механизмом. Жалко даже из этой картинки не совсем…

  • Если ты изобретатель и не изобрел велосипед - грош тебе цена как изобретателю!

    Патент РФ 2452649 Рама велосипеда Захаров Андрей Андреевич Изобретение относится к однобалочным пластиковым рамам, снабженным элементами,…


  • ДВС CITS V-Twin и патент на него

    Clean Two-Stroke CITS V-Twin Engine Уже работает тестовый экземпляр Two stroke engine porting arrangement US 20130228158 A1 ABSTRACT A…


  • Фотонный лазерный двигатель

    Photonic Laser Thruster - оказывается название не из фантастики, а изделие вполне уже рабочее... Photonic Laser Thruster (PLT) is a pure photon…

Выпуск 3

В своём очередном видеоуроке астрономии профессор расскажет о многоступенчатой ракете, а также о том, как выбирают место для космодрома.

Многоступенчатая ракета

Многоступенчатая ракета представляет собой летательный аппарат, состоящий из двух или более механически соединённых ракет, называемых ступенями, разделяющихся в полёте. Многоступенчатая ракета позволяет достигнуть скорости большей, чем каждая из её ступеней в отдельности. Составная ракета позволяет более рационально использовать ресурсы за счёт того, что в полёте ступень, выработавшая своё топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полёта. Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней. При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике, от 2-х до 8-и), работающих одновременно и располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая, таким образом, суммарную тягу, что особенно нужно во время работы первой ступени, когда вес ракеты максимален.

Место для космодрома

Космодром — это территория, на которой размещается комплекс сооружений, предназначенный для запуска космических аппаратов в космос. Название «космодром» дано по аналогии с аэродромом для самолётов. Обычно космодромы занимают место с большой площадью и находятся на удалении от густонаселенных мест, чтобы отделяющиеся в процессе полета ступени не навредили жилым территориям или соседним стартовым площадкам. Наиболее выгодное место для космодрома — на экваторе, чтобы стартующий носитель мог наиболее полно использовать энергию вращения Земли. Ракета-носитель при запуске с экватора может сэкономить около 10 % топлива по сравнению с ракетой, стартующей с космодрома, находящегося в средних широтах. А также с экватора возможен запуск на орбиту с любым наклонением.

Основная задача ракеты заключается в том, чтобы задан­ному грузу (космическому аппарату или боевому заряду) сооб­щить определенную скорость. В зависимости от полезного груза и необходимой скорости назначается и запас топлива. Чем больше груз и скорость, тем больший запас топлива должен на­ходиться на борту, а, следовательно, тем большим оказывается стартовый вес ракеты, тем большая тяга требуется от двигателя.

Вместе с увеличением запаса топлива растет объем и вес ба­ков, с увеличением необходимой тяги увеличивается вес двига­теля; возрастает общий вес конструкции.

Основной недостаток одноступенчатой ракеты заключается в том, что заданная скорость сообщается не только полезному грузу, но по необходимости и всей конструкции в целом. При увеличении веса конструкции это ложится дополнительным бре­менем на энергетику одноступенчатой ракеты, что и накладывает очевидные ограничения на величину достижимой скорости. Частично эти трудности преодолеваются при переходе к много­ступенчатой схеме.

Под многоступенчатой понимается такая ра­кета, у которой в полете производится частичный отброс уже выполнивших свои функции двигательных установок или топлив­ных баков, а дополнительная скорость в дальнейшем сообщается только оставшейся массе конструкции и полезному грузу. Простейшая схема составной ракеты показана на рис. 1.7.

Вначале, на старте, работает наиболее мощный двигатель - двигатель первой ступени, способный поднять ракету со старто­вого устройства и сообщить ей определенную скорость. После того как будет израсходовано топливо, содержащееся в баках первой ступени, блоки этой ступени отбрасываются, а дальней­шее увеличение скорости достигается за счет работы двигателей следующей ступени. После того как выгорит топливо второй сту­пени, включается двигатель третьей ступени, а ставшие ненужными элементы конструкции предыдущей ступени должны быть отброшены. Теоретически описанный процесс деления может быть продолжен и далее. Однако на практике выбор числа ступеней следует рассматривать как предмет поиска оптимального конструктивного варианта. Увеличение числа ступеней при заданном полезном грузе ведет к уменьшению стартового веса ракеты, но при переходе от n ступеней к n+1 –ой выигрыш с числом n уменьшается, ухудшаются весовые характеристики отдельных блоков, возрастают экономические затраты и, совершенно очевидно, снижается надежность.

Рис. 1.7. Принципиальная схема составной (трехступенчатой) ракеты: 1- топливные баки,

2- двигатели, 3- полезный груз, 4- узлы стыковки блоков

В отличие от одноступенчатой, в составной ракете одновременно с полезным грузом заданную начальную скорость приобретает масса конструкции не всей ракеты, а только последней ступени. Массы же блоков предыдущей ступени получают меньшие скорости, и это приводит к экономии энергетических затрат.

Посмотрим, что дает нам составная ракета в идеальных условиях – за пределами атмосферы и вне поля тяготения.

Обозначим через μ к1 отношение массы ракеты без топлива первой ступени к стартовой массе всей ракеты, через μ к2 – отношение массы второй ступени без топлива этой ступени к той массе, которую имеет ракета непосредственно после сброса блоков первой ступени. Аналогично для последующих ступеней примем обозначения μ к3, μ к4 ...

После того, как выгорит топливо первой ступени, идеальная скорость ракеты будет:

После того как будет использовано топливо второй ступени, к этой скорости добавится следующая:

Каждая последующая ступень дает увеличение скорости, выражение которой строится по тому же образцу. В итоге получим:

где W e 1 , W e 2 , … - эффективные скорости истечения.

Таким образом, в рассмотренной схеме последовательного включения двигателей идеальная скорость составной ракеты определяется простым суммированием скоростей, достигнутых каждой ступенью. Сумма весов заправленных блоков всех по­следующих ступеней (включая и сам полезный груз) рассматри­вается при этом как полезный груз для предыдущей ступени. Схема включения двигателей может быть и не только последо­вательной. В некоторых составных ракетах двигатели различных ступеней могут работать и одновременно. О таких схемах мы поговорим позже.

В отличие от одноступенчатой, составная ракета на химиче­ском топливе в принципе уже решает задачу выведения спут­ника на околоземную орбиту. Первый искусственный спутник Земли был выведен в

1957 г. именно двухступенчатой ракетой. Двухступенчатая ракета выводила на орбиту все спутники серии «Космос» и «Интеркосмос». Для более тяжелых спутников тре­буется в ряде случаев трехступенчатая ракета.

Многоступенчатые ракеты открывают возможность и для до­стижения еще больших скоростей, необходимых для полета к Луне и планетам Солнечной системы. Здесь уже трехступенча­тыми ракетами не всегда можно обойтись. Потребная характеристическая скорость V x существенно возрастает, а задача фор­мирования космических орбит приобретает более сложный ха­рактер. Скорость вовсе не обязательно увеличивать. При выходе на орбиту спутника Луны или планеты относительную скорость надо уменьшить, а при посадке - погасить полностью. Двига­тели включаются многократно с длительными интервалами, в те­чение которых движение корабля определяется действием грави­тационного поля Солнца и ближайших небесных тел. Но сейчас и в дальнейшем мы ограничимся оценкой роли только земного тяготения.

Статьи по теме: